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	 Carbonate settings have historically been subdivided into 
platform-slope-basin floor or ramp systems.  Within these 
systems, carbonate mud has either a neritic or pelagic origin.  
In modern neritic tropical to sub-tropical environments, like 
the Great Bahama Bank and Florida Shelf, green codiacean 
algae, like Penicillus, are thought to be responsible for much 
of the shallow water mud generation since these algae 
break down into micron-sized aragonite needles (Stockman 
et al., 1967; Neumann and Land, 1975).  Secondarily, 
biomicritization of grains by boring organisms, as well as 
fecal pellet production, play a role in shallow water micrite 
generation.  There is a long standing debate over the organic 
versus inorganic origin of Bahamian mud (Shinn et al., 
1989).  Milky water column events consisting of suspended 
aragonite needles, termed whitings, are a common 
occurrence in both the Bahamas and Florida Shelf (Robbins 
et al., 1997).  Whitings may be inorganic precipitation 
events or biologically induced and may be responsible for 
a significant volume of shallow water mud generation over 
time (Shinn et al., 1989; Robbins and Blackwelder, 1992; 
Purkis et al., 2017).  Recent studies link precipitation events 
to ocean circulation patterns, specifically off-platform ocean 
currents that periodically reach the platform (Purkis et al., 
2017).  
	 Temperate carbonate seafloors host coarse-grained 
carbonates and generally lack mud producing organisms.  
The origin of carbonate mud in temperate, non-tropical 
settings is less common and more enigmatic. Studies 
of modern settings like South Australia suggest mud is 
composed of macerated shell fragments, rather than from 
aragonite precipitation in seawater documented from 
tropical to sub-tropical settings (O’Connell and James, 
2015).
	 Pelagic biogenic production is an important source of 
carbonate mud.  In Mesozoic and younger open water 
systems, pelagic biogenic production by calcareous 
organisms has resulted in the deposition of micro- and 
nannofossil tests and calcareous ooze deposition, preserved 
as pelagic limestones and chalks in the sedimentary record 

(Ekdale, 1984).  Microfossils, like foraminifera, make up 
pelagic limestone units, like those found in the Cretaceous 
aged Eagle Ford, which are interbedded with organic and 
clay-rich shale beds (Denne et al., 2014; Hentz et al., 2014; 
Denne et al., 2016; Denne and Breyer, 2016; Fairbanks et 
al., 2016).  Nannofossils, specifically coccololithophores, 
make up chalk deposits.  Jurassic-age chalks preserved in 
the North Sea and across portions of Europe are among 
the most heavily cited geologic examples (Herrington et 
al., 1991).  Chalks deposited in the Cretaceous Western 
Interior Seaway, like the Niobrara represent typical pelagic 
biogenic coccolithophore-rich mud deposition (Longman 
et al., 1998; Sonnenberg, 2011).  Average calcareous ooze 
deposition rates from Cretaceous-aged chalks is 1.84 cm/ ky 
(Locklair et al., 2011). Where clay dilution was locally high, 
marls instead of chalks are preserved (Longman et al., 1998; 
Sonnenberg, 2011).  
	 Large volumes of carbonate mud also occur in mud 
mounds.  Mud mounds are carbonate buildups with 
depositional relief that are composed dominantly of 
carbonate mud, peloid mud, or micrite (Bosence and 
Bridges, 1995).  Mud mounds may be microbial or 
biodetrital in nature (Bosence and Bridges, 1995).  
Microbial mounds are relatively in-situ features, 
constructed from the trapping and baffling of sediment 
by microbial mats (Bosence and Bridges, 1995; Lees 
and Miller, 1995; Monty, 1995), whereas biodetrital 
mud mounds are composed of broken and transported 
skeletal debris (Bosence, 1995; Bosence and Bridges, 
1995; Bridges, 1995; Taberner and Bosence, 1995).  In 
biodetrital mud mounds, mud may be generated locally 
or transported significant distances (Bosence and Bridges, 
1995).  These two types of mounds may or may not be 
mutually geographically exclusive.  In some cases, microbial 
facies transition to biodetrital facies within one mound 
(Bosence and Bridges, 1995).  Mud mounds can be found 
in a variety of settings ranging from deep basinal, to lower 
slope, to shelfal or lagoonal environments (Bosence and 
Bridges, 1995; Pratt, 1995).
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