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ABSTRACT Outcrops are routinely used for research and education purposes, and are a key component of geoscientific train-
ing. Fundamentally, re-evaluation of outcrop observations and reproducibility of results is critical for scientific advancement.
Accessibility to the field and outcrops, however, remain problematic for several technical and societal reasons. Advances in
the application of digital outcrop models to geoscience research and training have seen a significant rise in recent years due to
technological innovation and user-friendly workflows. Herein we discuss the necessity to digitally capture outcrops to preserve
them and the natural landscapes that have shaped the Geosciences. Examples of outcrop re-evaluation that reflect sedimen-
tological concept and technique advances, only possible with digital outcrops, is presented. Digitally preserved outcrops’ role
as milieus for increased accessibility, inclusivity, and scientific reproducibility is discussed. The time has never been more ap-
propriate, and the tools never more accessible, to preserve outcrops and promote a more open and inclusive environment for
geoscience research, education, and training.
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1. THE IMPORTANCE OF OUTCROPS

Access to outcrops is critical to the advancement of our
knowledge of Earth history, and the forces that con-

trol geologic processes, and their products. Outcrops offer
geoscientists 2D and 3D views of minerals, rocks, faults,
folds, bedding, stratal architecture, unconformities, and
many other geologic features that can only be seen through
field-based investigations. Outcrops are irreplaceable be-
cause they are the visible expression of past Earth sur-
face processes and are frequently used as subsurface ana-
logues. Outcrops can include thick rock sequences that
record long-term deposition and paleoenvironmental evo-
lution through deep time (Romans & Graham, 2013), as
well as the products of large-scale geological processes (e.g.,
mountain building, plate tectonics, volcanism).

Careful examination and interpretation of outcrops is
fundamental for geoscientific training (Elkins & Elkins,
2007, Tretinjak & Riggs, 2008). Advanced outcrop synthe-
ses often underpin the development of innovative ideas
(e.g. Van Wagoner et al., 1990). Access to outcrops in any
format is therefore critical to the development of future
geoscientists, continued training for career geoscientists,
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and the advent of scientific breakthroughs. Fundamen-
tally, the discovery, interpretation, re-examination, and
re-interpretation of outcrops are critical to the evolution
of Geoscience and advanced understanding of Earth pro-
cesses. Outcrop conservation is therefore critical to this,
and importantly for digital conservation, support for ac-
cessibility, inclusivity, and reproducibility in the Earth sci-
ences.

2. NECESSITY FOR DIGITAL PRESERVATION

Outcrops intrinsically change over time through natural
and/or anthropogenic processes, as do the geological sto-
ries they tell. As layers are uncovered, the dynamic na-
ture of Earth’s processes are revealed through erosion and
evolving cross sections that illustrate the spatial and tem-
poral variability of the Earth. Landscape evolution unfor-
tunately provides a ‘catch-22’ in which erosion is required
to unearth geologic history, but these same outcrops will
ultimately succumb to continued denudation. If important
outcrops are destroyed or covered by vegetation (Fig. 1),
the geological story and the interpretations that can be
made thereof (e.g., architectural/structural elements and
lateral facies variability) is limited and/or lost. Climate
change exacerbates this problem and threatens the long-
term preservation of key outcrops (Fig. 2) and landscapes
(Guzzetti et al., 2003, Wignall et al., 2018). Alarmingly, an-
thropogenic actions that include the development of com-
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Figure 1: Illustration of vegetation that cover a frequently visited outcrop of a preserved fluvial channel-fill complex in NW Arkansas,
USA. (A) A digital outcrop model generated from imagery recorded in 2007 during an undergraduate class fieldtrip visit. (B) Interpre-
tation of exposed facies and approximate vegetation coverage in 2007 from the digital outcrop model. Vegetation covers approximately
6% of the outcrop. (C) Photograph of the same outcrop in 2018. (D) Interpretation outline of exposed facies and approximate veg-
etation coverage in 2018. Vegetation ultimately expands to cover approximately 57% of the outcrop. (E) Google Earth image from
2014 of former outcrop located near Bastrop, Texas, USA. The outcrop exposed the only accessible parasequences of the uppermost
Calvert Bluff Fm and lower parasequences of Sabinetown Fm. which contain abundant Ophiomorpha as well as other marine trace
fossils and fauna that confirmed the marine nature of the interval (Demchuk et al., 2019). This interval is important to the oil and
gas industry for correlation with deeper water Wilcox deposits. (F) Interpretation outline of exposed outcrop facies. (G) Google Earth
image from 2021 of the same outcrop that is no longer accessible because it is covered by vegetation and/or removed by infrastructure
development. (H) Interpretation of former outcrop exposure covered and/or destroyed by anthropogenic activity. Approximately 83%
of outcrop has been removed by infrastructure development. Vegetation covers approximately 17% of the remaining original outcrop.
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mercial or residential infrastructure (e.g., roads, bridges),
and other human actions that damage or obscure outcrops
(Chan & Kamola, 2017, Nutman et al., 2019), outpace natu-
ral denudation by an order of magnitude (B. H. Wilkinson,
2005). This prevents further study of key outcrops (Fig. 1).

Moreover, accessibility to important outcrops may be
complicated, problematic, inconsistent, seasonal, or even
impossible, preventing scientists from developing new
ideas and skills derived from these outcrops. Personal
constraints or limitations such as physical disability, fi-
nancial limitations, carbon footprint reduction, restricted
geographical mobility, and safety concerns (Marín-Spiotta
et al., 2020, Olcott & Downen, 2020, Giles et al., 2020) can
prove too complex, or problematic, to overcome and pre-
vent fieldwork. Access to outcrops that were previously
accessible may no longer be permitted out of safety or
environmental concerns (e.g., outcrops are too steep, or
biota conservation limits access), because of land owner-
ship changes (Chan & Kamola, 2017), increased vegetation,
or a seasonal climate, weather, or high-latitude location
(Senger et al., 2021).

However, technological advances in digital data col-
lection techniques applied to outcrops over the past few
decades (Howell & Burnham, 2021) afford geoscientists
with an opportunity to digitally preserve and archive crit-
ical geological data (outcrops). There is, therefore, an op-
portunity to digitize our geoheritage before natural forces
destroy these outcrops, or anthropogenic pressures require
intervention. This will facilitate greater outcrop accessibil-
ity.

2.1 Geoheritage
Our geoheritage, and the evolution of Geoscience, are in-
timately linked to the outcrops where original and funda-
mental concepts were developed. Fortunately, many of
these outcrops are still accessible and available to preserve.
For example, a coastal exposure in southeast Scotland near
Siccar Point was made famous by James Hutton. This clas-
sic outcrop site illustrates the fundamental concept of an
angular unconformity (Fig. 3) and was used as evidence for
the theory of uniformitarianism (Hutton, 1795). This site
remains a well-visited locality by geoscientists. ‘Hutton’s
Unconformity’ is part of our relatively short, yet rich geo-
science heritage. However, the outcrop remains inaccessi-
ble for many visitors. It can only be accessed by navigating
a steep, vegetated, and often muddy slope, with the aid of
an in-situ rope. This classic and historically important site
is now digitally preserved (Fig. 3) and provides access for
all geoscientists.

2.2 Geoconservation
Geoconservation efforts primarily focus on recognition
and preservation of classic sites and landscapes (Burek
& Prosser, 2008). This includes outcrops recognized as sites
of outstanding universal value, such as UNESCO Geoparks
and World Heritage Sites, which are also at risk. An exam-
ple of this is the Jurassic coast in the UK, visited by geo-

scientists, naturalists, and tourists from around the world.
In July 2021 the largest rockfall in the UK for 60 years oc-
curred on the Jurassic Coast, resulting in more than 4,000
tonnes of debris falling onto the shoreline and into the sea
(Fig. 4). This event destroyed or obscured a significant por-
tion of the outcrop belt, and part of the World Heritage Site.
However, as the cliffs collapse, strata beneath is revealed,
thus providing another opportunity to capture a new view
of the outcrop. Important sites around the world should
be preserved, and as geoscientists, we should strengthen
geoconservation efforts by digitally preserving outcrops
for future generations of geoscientists and naturalists alike.

2.3 Accessibility and Inclusivity
Access to outcrops is a fundamental part of geoscience ed-
ucation and training. This concept is well documented in
the geoscience education literature (Elkins & Elkins, 2007,
Tretinjak & Riggs, 2008, Kastens et al., 2009). Fieldwork is
an essential component of most geoscience degrees around
the world. This has declined recently however, for exam-
ple in the US, as geoscience programs move away from
traditional field work (e.g., bedrock mapping, stratigraphic
analysis) to more applied geological training (e.g., geo-
physics and remote sensing, laboratory-based geochem-
istry) (Whitmeyer et al., 2009). The average number of
students enrolled in summer field camps, however, has
increased (Gonzales et al., 2011). This suggests that field-
based geological training remains an important part of
geoscience education. Educators are therefore researching
methods to maximize field-based learning using digital
methods (Tavani et al., 2020, Kuckero et al., 2020).

Some outcrops used to illustrate fundamental geological
concepts in the field are often located in difficult to access
areas (McCaffrey et al., 2005). Additionally, the novel coro-
navirus SARS-CoV-2 (Covid-19) pandemic has adversely
affected field-based research and educational field trips
across the geosciences, and the broader scientific commu-
nity (Geib, 2020), and may continue to do so for some time
to come. Border closures and limited transportation, as a
result of Covid-19 safety protocols and procedures, have
prevented access to field sites and outcrops. This has high-
lighted accessibility - once again - as a prominent issue in
the geosciences.

Significantly, outcrop access is most difficult for those
with physical disabilities (Feig et al., 2019, Stokes et al.,
2019), and students and scientists from marginalized racial,
ethnic, and gender groups (Marín-Spiotta et al., 2020, Olcott
& Downen, 2020, Giles et al., 2020). Academics, educators,
and practitioners must acknowledge the limiting and un-
welcoming environments that deter students from joining,
or indeed continuing their studies, within the geosciences
(Marín-Spiotta et al., 2020). Actions must be taken within
the geoscience community to address this lack of diversity
and inclusivity in the student body, workforce, and orga-
nizations (Anadu et al., 2020, Dutt, 2020, Fernandes et al.,
2020, Dowey et al., 2021).

As fieldwork will surely continue to be an integral part

Digital outcrop conservation 7



Permafrost: Ice wedges and meltwater

Permafrost: Ice wedges

Bluff CollapseBluff denudation

A

B

C D

Active
outcrop
collapse

Collapse 
debris fans

5 m

2 m

5 m

10 m

5 m
Dinosaur track site

Permafrost
meltwater

Permafrost 
meltwater

Permafrost 
ice wedges

Figure 2: Examples of outcrop denudation along the Colville River on the North Slope of Alaska related to permafrost melt. (A)
Permafrost ice wedges at the interface between the outcrop and modern tundra. (B) Detailed view of bluff-top ice wedges. (C) De-
nudation of Cretaceous stratigraphy and bluff collapse caused by permafrost melt. This process generates debris fans that cover the
outcrop and destroys evidence of important stratigraphic and paleontological markers. This site contains an extremely rare layer of
Hadrosaur tracks (Flaig et al., 2018). The probability of this locality remaining undamaged for further investigation is low. (D) Bluff
collapse caused by combination of river undercutting and permafrost melt.
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Figure 3: 3D digital outcrop model of the Siccar Point outcrop, which contains the angular unconformity used as evidence for the
theory Uniformitarianism proposed by James Hutton. This outcrop is frequently visited by geoscientists. The outcrop is difficult to
access due to steep ascents down hillsides, but is also susceptible to coastal erosion. The 3D digital outcrop model of this outcrop,
stored on the open access database e-Rock, provides a digital record for Earth science geoheritage.

of geoscience education, the technology and tools exist now
to digitally preserve and make accessible digital versions
of key outcrops, thus facilitating greater accessibility to
‘the field’. Crucially, this digital preservation promotes a
more accessible, inclusive, and safer environment for all
geoscientists (Fig. 5).

2.4 Reproducibility
Reproducibility of observations, data collection, and results
are paramount for scientific progress as it encourages trans-
parency and ensures scientific rigor and independent verifi-
cation. These are vital components of the scientific method
(McNutt, 2014). Principles that promote data Findability,
Accessibility, Interoperability and Reusability (FAIR) have
been created to maximize the “added-value” of scientific
data (M. D. Wilkinson et al., 2016). More importantly, these
principles endorse open data sharing practices and policies,
which have become a pivotal issue in scientific reporting
(Nature, 2016). In fact, the term ‘Reproducible Research’
was coined by geoscientists at Stanford University in the
1990s to eliminate the lengthy process of reproducing re-
sults and figures from previous work. The researchers of
the Stanford Exploration Project implemented methods
such that a small set of standard commands ensures results
and figures produced for publications are readily accessible
and reproducible (Claerbout & Karrenbach, 1992, Schwab
et al., 1995). Most of the geosciences, unfortunately, have
been slow to adopt this practice of digital scholarship, and
the discipline is behind other fields in this respect (Gil et

al., 2016).
The traditionally descriptive and field-based nature of

geoscience data collection and interpretation leaves little
room for reproducibility if the outcrops are no longer acces-
sible, or if they no longer exist. A digital (virtual) outcrop
revolution at the turn of the century, however, introduced
geoscientists to practical methods to quantitatively cap-
ture and record outcrops in 3D (Xu et al., 2000, Bellian et
al., 2005, Howell & Burnham, 2021). Digitally preserved
outcrops generate a dataset that facilitates the long-term
archival of 3D data (outcrop point clouds, surface meshes,
source imagery), associated measurements, and interpreta-
tions. Digital outcrop data is not limited to large exposures
however, even hand sample and core-scale 3D models (e.g.
Betlem et al., 2020) can, and should, be generated and
archived. Fundamentally, digital outcrop data are inher-
ently quantitative, thus are well placed to bridge the critical
gap between outcrop deterioration and continued accessi-
bility, reproducibility, and re-evaluation.

2.5. Re-evaluation
Digital outcrop data can be repeatedly re-investigated and
re-evaluated as concepts and techniques advance (Nesbit et
al., 2020) - key components of the FAIR guiding principles
of scientific data (M. D. Wilkinson et al., 2016), and the
scientific method (McNutt, 2014), facilitating an open data
sharing approach to geological data.

Fundamentally, quantifying sedimentological observa-
tions is essential to linking modern geomorphic processes
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Figure 4: Image of the largest rockfall (greater than 4,000 tonnes of debris) in 60 years, in the UK. The collapse oc-
curred along the Jurassic Coast, a UNESCO World Heritage Site. These important, cliff-forming outcrops are highly sus-
ceptible to collapse, deterioration, and destruction. Cliff is approximately 85 m tall. Photo courtesy of James Loveridge
(https://www.jamesloveridgephotography.co.uk/the-jurassic-coasts-biggest-cliff-fall-in-60-years/, April 2021).

to those that controlled what is preserved in the rock record.
An example of this is the now widely adopted distribu-
tive fluvial system (DFS) model (sensu Weissmann et al.
(2010)). The prevalence of these systems in modern conti-
nental basins, observable in satellite imagery and in field-
based investigations, suggests that their deposits may be
more common in the rock record than previously identified.
For example, the Huesca fluvial system in the Ebro Basin,
northern Spain was interpreted as a DFS by Hirst (1992) us-
ing traditional data collection and analysis methods. Three
decades later, using digital outcrop models and associated
quantitative methods, these sections were re-investigated
and re-described (Burnham & Hodgetts, 2019, Martin et
al., 2021). Data from the succession could be more pre-
cisely quantified with digital outcrop models because the
outcrops are steep and difficult to fully access. The digital
outcrop models provided a precise spatial position of each
measured sandstone body, and their relative relationships.
Basin-wide stratigraphic architecture characterization, a
difficult task to perform on fluvial outcrops that was not
possible for the original investigators, was now undertaken
using digital outcrop methods to test the DFS depositional

model. The original interpretation of a DFS was ultimately
validated using digital outcrop models (Martin et al., 2021).

Another example of outcrop re-evaluation following sci-
entific progression and model testing, is the concept of se-
quence stratigraphy (Van Wagoner et al., 1990). The exten-
sive Book Cliffs outcrop belt of eastern Utah and western
Colorado is where foundational data and criteria behind
the development of sequence stratigraphic models was
defined (Van Wagoner et al., 1990). The exposed Santonian-
Campanian sequence has been used for the past 25 years
as a ‘textbook’ example that contains classic features crit-
ical for development of the basic sequence stratigraphic
model. Recent investigations that analyze kilometer-scale
spatial relationships in vertical cliff faces in the Book Cliffs,
that are otherwise impossible to characterize without dig-
ital outcrop models, have challenged previous concepts
of eustatic fluctuations controlling the resultant stratigra-
phy (Rittersbacher et al., 2014, Howell et al., 2018, Pattison,
2019). Geological models derived from outcrops, in partic-
ular outcrops frequently used as subsurface analogues like
the Book Cliffs (Pattison, 2019), should be rigorously tested
for accuracy because of their significant implications for
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resource exploration and waste storage (Alexander, 1993,
Howell et al., 2014). Digital outcrop models provide a ro-
bust dataset from which to build geological models and
test concepts.

3. CURRENT DIGITAL OUTCROP PRESERVATION
METHODS AND INITIATIVES

3.1. Digital and Virtual Outcrops
Methods to build digital outcrop models (Bellian et al.,
2005), or sometimes called Virtual Outcrops (Xu et al., 2000),
progressed significantly since the turn of the century (How-
ell & Burnham, 2021). The most significant advancement in
recent years is related to more accessible and user-friendly
workflows that generate high-resolution photorealistic 3D
digital representations of outcrops and landscapes using
Unmanned Aerial Vehicles (UAV) (Nesbit et al., 2018) and
smart phones (Corradetti et al., 2021). Cawood et al. (2017)
compare methods of digital outcrop model creation from
lidar with ground based and UAV generated photogram-
metry, contrasting the relative errors in bed geometry of
a well exposed syncline. Howell et al. (2021) discuss best-
practices for robust digital outcrop data collection using
UAVs. With an approximate error (~5 m) associated with
internal satellite navigation systems of commercial UAVs,
the inclusion of ground control points (GCP) measured
using differential GPS in the model will increase positional
accuracy. This is a time consuming process, however, if
a large outcrop is targeted for capture. Integrated Real-
time Kinematic (RTK) navigation systems with UAVs are
available, but are cost prohibitive. In most cases, how-
ever, the internal navigation system of UAVs is sufficient to
accurately position and georeferenced the digital outcrop
model.

When combined with ground-truth observations (e.g.,
geologic maps, sedimentary logs), digital outcrop models
are used to elucidate key earth processes such as basin-
scale controls on sedimentation (Burnham et al., 2020), ar-
chitectural element characteristics (Mitten et al., 2020), and
complex structural relationships (Cawood & Bond, 2018)
that are not achievable without the quantitative spatial con-
text that digital outcrop models provide. Bespoke software
Virtual Reality Geological Studio (VRGS) (Hodgetts et al.,
2015) and Lime (Buckley et al., 2019) are designed for visu-
alization and analysis of 3D outcrop and geological data of
any scale (i.e., millimetric – kilometric). VRGS and Multi-
outcrop Sharing and Interpretation System (MOSIS) (Rossa
et al., 2019) push this further by providing fully immersive
digital outcrop experiences.

Alternative to digital outcrop models are other high reso-
lution digital representations of outcrops, such as gigapixel
imagery. Gigapixel images offer high resolution data that
can be effectively used to characterize large-scale to small-
scale features from outcrops that are otherwise inaccessible
(Van Der Kolk et al., 2015, Flaig et al., 2019) and that may
not be resolvable in digital outcrop models Pitts et al. (2017).
Methods that incorporate both digital outcrop models and
gigapixel imagery have been used to characterize fine-scale

sedimentological features from outcrop (e.g. Frébourg et al.,
2016). These methods provide an invaluable resource for
detailed investigation of outcrop models. Gigapixel tech-
nology and images have also been used as effective virtual
teaching tools (Piatek et al., 2012, Senger et al., 2021). Fully
integrated digital outcrop models and gigapixel imaging
methods show promising results (Biber et al., 2018), and
may provide the scale and context that physical fieldwork
and outcrop visits also afford, if the outcrops allow for it.

Reproducibility

Re-evaluation

Quantitative
Research

Accessibility

Inclusivity

Field
work

Digital
Outcrops

Virtual
Field Trip

Open
Data

Geoheritage

Preservation

Figure 5: Circular chart that illustrates the interlinked role that
digital outcrops play in providing greater accessibility, inclusivity,
and reproducibility in geoscience research and education.

3.2. Databases and Existing Initiatives
Online digital outcrop model databases (e.g., e-Rock (Ca-
wood & Bond, 2019), GeoTour3D, V3Geo (Buckley et al.,
2021), GeoBase, Svalbox (Senger et al., 2021), Virtual Aus-
tralia) have seen a rapid increase in generation and use, as
do a growing set of geological models hosted on the generic
3D photo-realistic model site Sketchfab. These databases
provide a valuable source of digital outcrop models for geo-
scientists that can be used for research activities, and most
recently the development of new online teaching methods
driven by the widespread expansion of the virtual class-
room due to the Covid-19 pandemic (Sima, 2020). Digital
outcrop model databases are currently used, and will be
employed in the future, as remarkable tools for virtual
learning and training (Bond & Cawood, 2021, Nesbit et al.,
2020, Senger et al., 2021). Digital outcrop models provide
educators with an invaluable tool to promote greater in-
clusivity that allows students to ‘visit’ outcrops that are
otherwise impossible to access (Senger et al., 2021). One
approach to facilitate outcrop ‘visits’, is to integrate out-
crop models into a teaching/training curriculum through
virtual field trips (VFTs). Though these are in their in-
fancy compared to traditional field trips, the use of outcrop

Digital outcrop conservation 11

https://www.e-rock.co.uk/
https://vrgeoscience.com/virtualfieldtrips/
https://v3geo.com/
https://geobase-wustl.herokuapp.com/
http://www.svalbox.no/outcrops/
https://www.ausgeol.org/atlas/
https://www.ausgeol.org/atlas/


models successfully provides students with an immersive,
quantitative experience to learn and visualize concepts
(Bond & Cawood, 2021). VFTs that utilize video game en-
gines have been used to visualize outcrop models (Nesbit
et al., 2018), whilst others provide fully interactive virtual
landscapes to simulate fieldwork (Houghton et al., 2015,
Gonzaga et al., 2018). Immersive VFTs that integrate digi-
tal outcrop models and other digital outcrop data to offer
multi-scale and multi-participant experiences (Marshall
& Higley, 2021, Métois et al., 2021) can complement tra-
ditional fieldwork, or at least a partial replacement for
traditional fieldwork for those who simply cannot access
outcrops.

As the geoscience community collects and generates
more digital outcrops from around the world, digital out-
crop databases will provide an invaluable, accessible, and
an important long-term archive of key geological outcrops.
These databases coupled with integrated VFTs will ulti-
mately help students and scientists’ hurdle some of the
barriers that traditional fieldwork presents (Fig. 5). As
technology advances, so too will fieldwork and fieldtrip
experiences.

4. THE WAY FORWARD

Outcrops and traditional fieldwork methods are irreplace-
able as environments for geological training and scientific
advancement. Fundamental geological principles and con-
cepts are most effectively taught ‘in the field’, yet many
outcrops are inaccessible for those with physical disabili-
ties or for marginalized racial, ethnic and gender groups.
Outcrops deteriorate, change, or are altered by human ac-
tivity. However, methods to record and construct digital,
photorealistic 2D and 3D representations of outcrops have
seen significant advancement over the last decade. This al-
lows for increased preservation potential and conservation
of outcrops, and inclusivity through an alternative oppor-
tunity to in-field experiences. The user-friendly methods
used to construct digital outcrops provide a tool that com-
plements field-based investigation and interpretation, and
in doing so, preserves the outcrop and presents an oppor-
tunity to enhance the way geoscience is taught.

Notably, the preservation of outcrops that tell the story of
the evolution of Earth science provides geoscientists with
the ‘data’ (the outcrops) that underpin the state of our cur-
rent knowledge. Digital outcrop models give present and
future geoscientists access to the landscapes and outcrops
that shaped Earth science. Once captured, the digitally pre-
served outcrops can be archived and stored in databases
that could be examined by anyone across the globe. Be-
cause re-interpretation and re-examination of outcrops has
and will continue to play a crucial role in the progress of
the geosciences, digital preservation will help to facilitate
access for advancements in science. Ultimately this pro-
motes open access data and sharing, a common goal across
all scientific disciplines, and encourages reproducibility - a
cornerstone of the scientific method.

The time has never been more appropriate, and the tools

never more accessible, to preserve our geological heritage
and facilitate greater accessibility, inclusivity, and repro-
ducibility of Earth science.
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